Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 11(1): 199-220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32866618

RESUMEN

BACKGROUND & AIMS: Liver fibrosis is a multifactorial trait that develops in response to chronic liver injury. Our aim was to characterize the genetic architecture of carbon tetrachloride (CCl4)-induced liver fibrosis using the Hybrid Mouse Diversity Panel, a panel of more than 100 genetically distinct mouse strains optimized for genome-wide association studies and systems genetics. METHODS: Chronic liver injury was induced by CCl4 injections twice weekly for 6 weeks. Four hundred thirty-seven mice received CCl4 and 256 received vehicle, after which animals were euthanized for liver histology and gene expression. Using automated digital image analysis, we quantified fibrosis as the collagen proportionate area of the whole section, excluding normal collagen. RESULTS: We discovered broad variation in fibrosis among the Hybrid Mouse Diversity Panel strains, demonstrating a significant genetic influence. Genome-wide association analyses revealed significant and suggestive loci underlying susceptibility to fibrosis, some of which overlapped with loci identified in mouse crosses and human population studies. Liver global gene expression was assessed by RNA sequencing across the strains, and candidate genes were identified using differential expression and expression quantitative trait locus analyses. Gene set enrichment analyses identified the underlying pathways, of which stellate cell involvement was prominent, and coexpression network modeling identified modules associated with fibrosis. CONCLUSIONS: Our results provide a rich resource for the design of experiments to understand mechanisms underlying fibrosis and for rational strain selection when testing antifibrotic drugs.


Asunto(s)
Tetracloruro de Carbono/toxicidad , Redes Reguladoras de Genes/efectos de los fármacos , Predisposición Genética a la Enfermedad , Cirrosis Hepática/inducido químicamente , Hígado/patología , Animales , Tetracloruro de Carbono/administración & dosificación , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Inyecciones Intraperitoneales , Hígado/efectos de los fármacos , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones , Sitios de Carácter Cuantitativo
2.
Mol Cell Biol ; 35(7): 1125-38, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25605333

RESUMEN

We previously showed that the orphan nuclear receptor Nur77 (Nr4a1) plays an important role in the regulation of glucose homeostasis and oxidative metabolism in skeletal muscle. Here, we show using both gain- and loss-of-function models that Nur77 is also a regulator of muscle growth in mice. Transgenic expression of Nur77 in skeletal muscle in mice led to increases in myofiber size. Conversely, mice with global or muscle-specific deficiency in Nur77 exhibited reduced muscle mass and myofiber size. In contrast to Nur77 deficiency, deletion of the highly related nuclear receptor NOR1 (Nr4a3) had minimal effect on muscle mass and myofiber size. We further show that Nur77 mediates its effects on muscle size by orchestrating transcriptional programs that favor muscle growth, including the induction of insulin-like growth factor 1 (IGF1), as well as concomitant downregulation of growth-inhibitory genes, including myostatin, Fbxo32 (MAFbx), and Trim63 (MuRF1). Nur77-mediated increase in IGF1 led to activation of the Akt-mTOR-S6K cascade and the inhibition of FoxO3a activity. The dependence of Nur77 on IGF1 was recapitulated in primary myoblasts, establishing this as a cell-autonomous effect. Collectively, our findings identify Nur77 as a novel regulator of myofiber size and a potential transcriptional link between cellular metabolism and muscle growth.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Células Cultivadas , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musculares Esqueléticas/ultraestructura , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Mutación , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Hepatology ; 62(2): 615-26, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25482505

RESUMEN

UNLABELLED: Liver X receptors (LXRs) are determinants of hepatic stellate cell (HSC) activation and liver fibrosis. Freshly isolated HSCs from Lxrαß(-/-) mice have increased lipid droplet (LD) size, but the functional consequences of this are unknown. Our aim was to determine whether LXRs link cholesterol to retinoid storage in HSCs and how this impacts activation. Primary HSCs from Lxrαß(-/-) and wild-type mice were profiled by gene array during in vitro activation. Lipid content was quantified by high-performance liquid chromatography and mass spectroscopy. Primary HSCs were treated with nuclear receptor ligands, transfected with small interfering RNA and plasmid constructs, and analyzed by immunocytochemistry. Lxrαß(-/-) HSCs have increased cholesterol and retinyl esters. The retinoid increase drives intrinsic retinoic acid receptor signaling, and activation occurs more rapidly in Lxrαß(-/-) HSCs. We identify Rab18 as a novel retinoic acid-responsive, LD-associated protein that helps mediate stellate cell activation. Rab18 mRNA, protein, and membrane insertion increase during activation. Both Rab18 guanosine triphosphatase activity and isoprenylation are required for stellate cell LD loss and induction of activation markers. These phenomena are accelerated in Lxrαß(-/-) HSCs, where there is greater retinoic acid flux. Conversely, Rab18 knockdown retards LD loss in culture and blocks activation, just like the functional mutants. Rab18 is also induced with acute liver injury in vivo. CONCLUSION: Retinoid and cholesterol metabolism are linked in stellate cells by the LD-associated protein Rab18. Retinoid overload helps explain the profibrotic phenotype of Lxrαß(-/-) mice, and we establish a pivotal role for Rab18 GTPase activity and membrane insertion in wild-type stellate cell activation. Interference with Rab18 may have significant therapeutic benefit in ameliorating liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Metabolismo de los Lípidos , Cirrosis Hepática/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Retinoides/farmacología , Proteínas de Unión al GTP rab/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Gotas Lipídicas/metabolismo , Cirrosis Hepática/patología , Receptores X del Hígado , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos , Análisis por Micromatrices , Receptores Nucleares Huérfanos/efectos de los fármacos , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Transducción de Señal
4.
Cell Metab ; 18(1): 106-17, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23823481

RESUMEN

Liver X receptors (LXRs) regulate lipogenesis and inflammation, but their contribution to the metabolic syndrome is unclear. We show that LXRs modulate key aspects of the metabolic syndrome in mice. LXRαß-deficient-ob/ob (LOKO) mice remain obese but show reduced hepatic steatosis and improved insulin sensitivity compared to ob/ob mice. Impaired hepatic lipogenesis in LOKO mice is accompanied by reciprocal increases in adipose lipid storage, reflecting tissue-selective effects on the SREBP, PPARγ, and ChREBP lipogenic pathways. LXRs are essential for obesity-driven SREBP-1c and ChREBP activity in liver, but not fat. Furthermore, loss of LXRs in obesity promotes adipose PPARγ and ChREBP-ß activity, leading to improved insulin sensitivity. LOKO mice also exhibit defects in ß cell mass and proliferation despite improved insulin sensitivity. Our data suggest that sterol sensing by LXRs in obesity is critically linked with lipid and glucose homeostasis and provide insight into the complex relationships between LXR and insulin signaling.


Asunto(s)
Tejido Adiposo/fisiología , Resistencia a la Insulina/fisiología , Lipogénesis/fisiología , Hígado/fisiología , Obesidad/fisiopatología , Receptores Nucleares Huérfanos/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Modelos Animales de Enfermedad , Hígado Graso/fisiopatología , Técnica de Clampeo de la Glucosa , Homeostasis/fisiología , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/fisiología , Receptores Nucleares Huérfanos/deficiencia , Receptores Nucleares Huérfanos/genética , PPAR gamma/fisiología , Transducción de Señal/fisiología , Proteínas de Unión a los Elementos Reguladores de Esteroles/fisiología , Factores de Transcripción/fisiología
5.
Cell Metab ; 17(3): 423-35, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23473036

RESUMEN

Transcriptional effectors of white adipocyte-selective gene expression have not been described. Here we show that TLE3 is a white-selective cofactor that acts reciprocally with the brown-selective cofactor Prdm16 to specify lipid storage and thermogenic gene programs. Occupancy of TLE3 and Prdm16 on certain promoters is mutually exclusive, due to the ability of TLE3 to disrupt the physical interaction between Prdm16 and PPARγ. When expressed at elevated levels in brown fat, TLE3 counters Prdm16, suppressing brown-selective genes and inducing white-selective genes, resulting in impaired fatty acid oxidation and thermogenesis. Conversely, mice lacking TLE3 in adipose tissue show enhanced thermogenesis in inguinal white adipose depots and are protected from age-dependent deterioration of brown adipose tissue function. Our results suggest that the establishment of distinct adipocyte phenotypes with different capacities for thermogenesis and lipid storage is accomplished in part through the cell-type-selective recruitment of TLE3 or Prdm16 to key adipocyte target genes.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Proteínas de Unión al ADN/metabolismo , Metabolismo de los Lípidos/fisiología , PPAR gamma/metabolismo , Proteínas/metabolismo , Termogénesis/fisiología , Factores de Transcripción/metabolismo , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas Co-Represoras , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis por Micromatrices , Oxidación-Reducción , Termogénesis/genética
6.
J Lipid Res ; 53(12): 2610-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23028113

RESUMEN

Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. Identifying novel regulators of mitochondrial bioenergetics will broaden our understanding of regulatory checkpoints that coordinate complex metabolic pathways. We previously showed that Nur77, an orphan nuclear receptor of the NR4A family, regulates the expression of genes linked to glucose utilization. Here we demonstrate that expression of Nur77 in skeletal muscle also enhances mitochondrial function. We generated MCK-Nur77 transgenic mice that express wild-type Nur77 specifically in skeletal muscle. Nur77-overexpressing muscle had increased abundance of oxidative muscle fibers and mitochondrial DNA content. Transgenic muscle also exhibited enhanced oxidative metabolism, suggestive of increased mitochondrial activity. Metabolomic analysis confirmed that Nur77 transgenic muscle favored fatty acid oxidation over glucose oxidation, mimicking the metabolic profile of fasting. Nur77 expression also improved the intrinsic respiratory capacity of isolated mitochondria, likely due to the increased abundance of complex I of the electron transport chain. These changes in mitochondrial metabolism translated to improved muscle contractile function ex vivo and improved cold tolerance in vivo. Our studies outline a novel role for Nur77 in the regulation of oxidative metabolism and mitochondrial activity in skeletal muscle.


Asunto(s)
Músculo Esquelético/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Animales , Creatina Quinasa/genética , Creatina Quinasa/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/química , Músculo Esquelético/enzimología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Oxidación-Reducción , Regiones Promotoras Genéticas/genética
7.
Cell Metab ; 13(4): 413-427, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21459326

RESUMEN

PPARγ and Wnt signaling are central positive and negative regulators of adipogenesis, respectively. Here we identify the groucho family member TLE3 as a transcriptional integrator of the PPARγ and Wnt pathways. TLE3 is a direct target of PPARγ that participates in a feed-forward loop during adipocyte differentiation. TLE3 enhances PPARγ activity and functions synergistically with PPARγ on its target promoters to stimulate adipogenesis. At the same time, induction of TLE3 during differentiation provides a mechanism for termination of Wnt signaling. TLE3 antagonizes TCF4 activation by ß-catenin in preadipocytes, thereby inhibiting Wnt target gene expression and reversing ß-catenin-dependent repression of adipocyte gene expression. Transgenic expression of TLE3 in adipose tissue in vivo mimics the effects of PPARγ agonist and ameliorates high-fat-diet-induced insulin resistance. Our data suggest that TLE3 acts as a dual-function switch, driving the formation of both active and repressive transcriptional complexes that facilitate the adipogenic program.


Asunto(s)
Adipogénesis/genética , Proteínas/metabolismo , Adipocitos/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular , Proteínas Co-Represoras , Grasas de la Dieta/farmacología , Regulación de la Expresión Génica , Resistencia a la Insulina , Ratones , PPAR gamma/agonistas , PPAR gamma/genética , PPAR gamma/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factor de Transcripción 4 , Transcripción Genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
8.
Gastroenterology ; 140(3): 1052-62, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21134374

RESUMEN

BACKGROUND & AIMS: Liver X receptors (LXRs) are lipid-activated nuclear receptors with important roles in cholesterol transport, lipogenesis, and anti-inflammatory signaling. Hepatic stellate cells activate during chronic liver injury and mediate the fibrotic response. These cells are also major repositories for lipids, but the role of lipid metabolism during stellate cell activation remains unclear. We investigated the role of LXR signaling stellate cell activation and susceptibility to fibrotic liver disease. METHODS: Immortalized and primary stellate cells purified from mice were treated with highly specific LXR ligands. Carbon tetrachloride and methionine/choline deficiency were used as chronic liver injury models. Reciprocal bone marrow transplants were performed to test the importance of hematopoietically derived cells to the fibrotic response. RESULTS: LXR ligands suppressed markers of fibrosis and stellate cell activation in primary mouse stellate cells. Lxrαß(-/-) stellate cells produce increased levels of inflammatory mediators, and conditioned media from Lxrαß(-/-) cells increases the fibrogenic program of wild-type cells. Furthermore, Lxrαß(-/-) stellate cells exhibit altered lipid morphology and increased expression of fibrogenic genes, suggesting they are primed for activation. In vivo, Lxrαß(-/-) mice have marked susceptibility to fibrosis in 2 injury models. Bone marrow transplants point to altered stellate cell function, rather than hematopoietic cell inflammation, as the primary basis for the Lxrαß(-/-) phenotype. CONCLUSIONS: These results reveal an unexpected role for LXR signaling and lipid metabolism in the modulation of hepatic stellate cell function.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática Experimental/metabolismo , Hígado/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Transducción de Señal , Animales , Biomarcadores/metabolismo , Tetracloruro de Carbono , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Regulación de la Expresión Génica , Genotipo , Trasplante de Células Madre Hematopoyéticas , Células Estrelladas Hepáticas/patología , Mediadores de Inflamación/metabolismo , Metabolismo de los Lípidos , Hígado/patología , Cirrosis Hepática Experimental/etiología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/patología , Cirrosis Hepática Experimental/prevención & control , Receptores X del Hígado , Masculino , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Nucleares Huérfanos/deficiencia , Receptores Nucleares Huérfanos/genética , Fenotipo
9.
Diabetes ; 58(12): 2788-96, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19741162

RESUMEN

OBJECTIVE: Nur77 is an orphan nuclear receptor with pleotropic functions. Previous studies have identified Nur77 as a transcriptional regulator of glucose utilization genes in skeletal muscle and gluconeogenesis in liver. However, the net functional impact of these pathways is unknown. To examine the consequence of Nur77 signaling for glucose metabolism in vivo, we challenged Nur77 null mice with high-fat feeding. RESEARCH DESIGN AND METHODS: Wild-type and Nur77 null mice were fed a high-fat diet (60% calories from fat) for 3 months. We determined glucose tolerance, tissue-specific insulin sensitivity, oxygen consumption, muscle and liver lipid content, muscle insulin signaling, and expression of glucose and lipid metabolism genes. RESULTS: Mice with genetic deletion of Nur77 exhibited increased susceptibility to diet-induced obesity and insulin resistance. Hyperinsulinemic-euglycemic clamp studies revealed greater high-fat diet-induced insulin resistance in both skeletal muscle and liver of Nur77 null mice compared with controls. Loss of Nur77 expression in skeletal muscle impaired insulin signaling and markedly reduced GLUT4 protein expression. Muscles lacking Nur77 also exhibited increased triglyceride content and accumulation of multiple even-chained acylcarnitine species. In the liver, Nur77 deletion led to hepatic steatosis and enhanced expression of lipogenic genes, likely reflecting the lipogenic effect of hyperinsulinemia. CONCLUSIONS: Collectively, these data demonstrate that loss of Nur77 influences systemic glucose metabolism and highlight the physiological contribution of muscle Nur77 to this regulatory pathway.


Asunto(s)
Grasas de la Dieta/efectos adversos , Hígado Graso/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Músculo Esquelético/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Glucemia/metabolismo , Calorimetría Indirecta , Grasas de la Dieta/administración & dosificación , Hígado Graso/etiología , Técnica de Clampeo de la Glucosa , Transportador de Glucosa de Tipo 4/metabolismo , Glucólisis , Metabolismo de los Lípidos , Ratones , Ratones Noqueados , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Consumo de Oxígeno , Fosforilación , Receptor de Insulina/metabolismo , Proyectos de Investigación , Transducción de Señal
10.
Mol Endocrinol ; 22(12): 2596-608, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18945812

RESUMEN

Members of the nuclear receptor 4A (NR4A) subgroup of nuclear receptors have been implicated in the regulation of glucose and lipid metabolism in insulin-sensitive tissues such as liver and skeletal muscle. However, their function in adipocytes is not well defined. Previous studies have reported that these receptors are rapidly up-regulated after treatment of 3T3-L1 preadipocytes with an adipogenic cocktail. We show here that although Nur77 expression is acutely induced by cAMP agonists in 3T3-L1 cells, it is not induced by other adipogenic stimuli, such as peroxisome proliferator-activated receptor-gamma ligands, nor is it induced during the differentiation of 3T3-F442A preadipocytes, suggesting that Nur77 induction is not an obligatory feature of preadipocyte differentiation. We further demonstrate that inflammatory signals that antagonize differentiation, such as TNFalpha and lipopolysaccharide, acutely induce Nur77 expression both in vitro and in vivo. We also show that NR4A expression in adipose tissue is responsive to fasting/refeeding. Retroviral transduction of each of the NR4A receptors (Nur77, Nurr1, and NOR1) into either 3T3-L1 or 3T3-F442A preadipocytes potently inhibits adipogenesis. Interestingly, NR4A-mediated inhibition of adipogenesis cannot be rescued by peroxisome proliferator-activated receptor-gamma overexpression or activation. Transcriptional profiling of Nur77-expressing preadipocytes led to the identification of gap-junction protein alpha1 (Gja1) and tolloid-like 1 (Tll1) as Nur77-responsive genes. Remarkably, retroviral expression of either Gja1 or Tll1 in 3T3-L1 preadipocytes also inhibited adipocyte differentiation, implicating these genes as potential mediators of Nur77's effects on adipogenesis. Finally, we show that Nur77 expression inhibits mitotic clonal expansion of preadipocytes, providing an additional mechanism by which Nur77 may inhibit adipogenesis.


Asunto(s)
Adipogénesis/genética , Diferenciación Celular/genética , Proteínas de Unión al ADN/fisiología , Proteínas del Tejido Nervioso/fisiología , Receptores de Esteroides/fisiología , Receptores de Hormona Tiroidea/fisiología , Factores de Transcripción/fisiología , Células 3T3-L1 , Adipocitos/metabolismo , Adipocitos/fisiología , Animales , Desdiferenciación Celular/genética , Línea Celular , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/genética , Ayuno/metabolismo , Ayuno/fisiología , Inflamación/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...